aviris module¶
This module contains functions to read and process NASA AVIRIS hyperspectral data. More info about the data can be found at https://aviris.jpl.nasa.gov. A portion of the source code is adapted from the jjmcnelis/aviris-ng-notebooks repository available at https://bit.ly/4bRCgqs. It is licensed under the MIT License. Credit goes to the original author Jack McNelis.
SPDX-FileCopyrightText = [ "2024 Jack McNelis jjmcne@gmail.com", ] SPDX-License-Identifier = "MIT"
aviris_to_image(dataset, wavelengths=None, method='nearest', output=None, **kwargs)
¶
Converts an AVIRIS dataset to an image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Union[xr.Dataset, str] |
The dataset containing the AVIRIS data or the file path to the dataset. |
required |
wavelengths |
np.ndarray |
The specific wavelengths to select. If None, all wavelengths are selected. Defaults to None. |
None |
method |
str |
The method to use for data interpolation. Defaults to "nearest". |
'nearest' |
output |
str |
The file path where the image will be saved. If None, the image will be returned as a PIL Image object. Defaults to None. |
None |
**kwargs |
Any |
Additional keyword arguments to be passed to
|
{} |
Returns:
Type | Description |
---|---|
Optional[rasterio.Dataset] |
The image converted from the dataset. If
|
Source code in hypercoast/aviris.py
def aviris_to_image(
dataset: Union[xr.Dataset, str],
wavelengths: Optional[np.ndarray] = None,
method: str = "nearest",
output: Optional[str] = None,
**kwargs: Any,
):
"""
Converts an AVIRIS dataset to an image.
Args:
dataset (Union[xr.Dataset, str]): The dataset containing the AVIRIS data
or the file path to the dataset.
wavelengths (np.ndarray, optional): The specific wavelengths to select. If None, all
wavelengths are selected. Defaults to None.
method (str, optional): The method to use for data interpolation.
Defaults to "nearest".
output (str, optional): The file path where the image will be saved. If
None, the image will be returned as a PIL Image object. Defaults to None.
**kwargs (Any): Additional keyword arguments to be passed to
`leafmap.array_to_image`.
Returns:
Optional[rasterio.Dataset]: The image converted from the dataset. If
`output` is provided, the image will be saved to the specified file
and the function will return None.
"""
from leafmap import array_to_image
if isinstance(dataset, str):
dataset = read_aviris(dataset, method=method)
if wavelengths is not None:
dataset = dataset.sel(wavelength=wavelengths, method=method)
return array_to_image(
dataset["reflectance"],
output=output,
transpose=False,
dtype=np.float32,
**kwargs,
)
extract_aviris(dataset, lat, lon, offset=2.0)
¶
Extracts AVIRIS data from a given xarray Dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
xarray.Dataset |
The dataset containing the AVIRIS data. |
required |
lat |
float |
The latitude of the point to extract. |
required |
lon |
float |
The longitude of the point to extract. |
required |
offset |
float |
The offset from the point to extract. Defaults to 2.0. |
2.0 |
Returns:
Type | Description |
---|---|
xarray.DataArray |
The extracted data. |
Source code in hypercoast/aviris.py
def extract_aviris(
dataset: xr.Dataset, lat: float, lon: float, offset: float = 2.0
) -> xr.DataArray:
"""
Extracts AVIRIS data from a given xarray Dataset.
Args:
dataset (xarray.Dataset): The dataset containing the AVIRIS data.
lat (float): The latitude of the point to extract.
lon (float): The longitude of the point to extract.
offset (float, optional): The offset from the point to extract. Defaults to 2.0.
Returns:
xarray.DataArray: The extracted data.
"""
crs = dataset.attrs["crs"]
x, y = convert_coords([[lat, lon]], "epsg:4326", crs)[0]
da = dataset["reflectance"]
x_con = (da["xc"] > x - offset) & (da["xc"] < x + offset)
y_con = (da["yc"] > y - offset) & (da["yc"] < y + offset)
try:
data = da.where(x_con & y_con, drop=True)
data = data.mean(dim=["x", "y"])
except ValueError:
data = np.nan * np.ones(da.sizes["wavelength"])
da = xr.DataArray(
data, dims=["wavelength"], coords={"wavelength": dataset.coords["wavelength"]}
)
return da
read_aviris(filepath, wavelengths=None, method='nearest', **kwargs)
¶
Reads NASA AVIRIS hyperspectral data and returns an xarray dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filepath |
str |
The path to the AVIRIS data. |
required |
wavelengths |
List[float] |
The wavelengths to select. If None, all wavelengths are selected. Defaults to None. |
None |
method |
str |
The method to use for selection. Defaults to "nearest". |
'nearest' |
**kwargs |
Any |
Additional arguments to pass to the selection method. |
{} |
Returns:
Type | Description |
---|---|
xr.Dataset |
The dataset containing the reflectance data. |
Source code in hypercoast/aviris.py
def read_aviris(
filepath: str,
wavelengths: Optional[List[float]] = None,
method: str = "nearest",
**kwargs: Any,
) -> xr.Dataset:
"""
Reads NASA AVIRIS hyperspectral data and returns an xarray dataset.
Args:
filepath (str): The path to the AVIRIS data.
wavelengths (List[float], optional): The wavelengths to select. If None,
all wavelengths are selected. Defaults to None.
method (str, optional): The method to use for selection. Defaults to
"nearest".
**kwargs (Any): Additional arguments to pass to the selection method.
Returns:
xr.Dataset: The dataset containing the reflectance data.
"""
if filepath.endswith(".hdr"):
filepath = filepath.replace(".hdr", "")
ds = xr.open_dataset(filepath, engine="rasterio")
wavelength = ds["wavelength"].values.tolist()
wavelength = [round(num, 2) for num in wavelength]
cols = ds.x.size
rows = ds.y.size
rio_transform = ds.rio.transform()
geo_transform = list(rio_transform)[:6]
# get the raster geotransform as its component parts
xres, _, xmin, _, yres, ymax = geo_transform
# generate coordinate arrays
xarr = np.array([xmin + i * xres for i in range(0, cols)])
yarr = np.array([ymax + i * yres for i in range(0, rows)])
ds["y"] = xr.DataArray(
data=yarr,
dims=("y"),
name="y",
attrs=dict(
units="m",
standard_name="projection_y_coordinate",
long_name="y coordinate of projection",
),
)
ds["x"] = xr.DataArray(
data=xarr,
dims=("x"),
name="x",
attrs=dict(
units="m",
standard_name="projection_x_coordinate",
long_name="x coordinate of projection",
),
)
global_atts = ds.attrs
global_atts["Conventions"] = "CF-1.6"
ds.attrs = dict(
units="unitless",
_FillValue=-9999,
grid_mapping="crs",
standard_name="reflectance",
long_name="atmospherically corrected surface reflectance",
)
ds.attrs.update(global_atts)
ds = ds.transpose("y", "x", "band")
ds = ds.drop_vars(["wavelength"])
ds = ds.rename({"band": "wavelength", "band_data": "reflectance"})
ds.coords["wavelength"] = wavelength
ds.attrs["crs"] = ds.rio.crs.to_string()
ds.rio.write_transform(rio_transform)
if wavelengths is not None:
ds = ds.sel(wavelength=wavelengths, method=method, **kwargs)
return ds